Synthetic Extracellular Matrices with Nonlinear Elasticity Regulate Cellular Organization
نویسندگان
چکیده
منابع مشابه
Building synthetic cellular organization
The elaborate spatial organization of cells enhances, restricts, and regulates protein-protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.
متن کاملEngulfing tumors with synthetic extracellular matrices for cancer immunotherapy.
Local immunotherapies are under investigation for the treatment of unresectable tumors and sites of solid tumor resection to prevent local recurrence. Successful local therapy could also theoretically elicit systemic immune responses against cancer. Here we explored the delivery of therapeutic dendritic cells (DCs), cytokines, or other immunostimulatory factors to tumors via the use of 'self-ge...
متن کاملSynthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures.
Scaffolding plays a pivotal role in tissue engineering. To mimic the architecture of a natural extracellular matrix component-collagen, nona-fibrous matrices have been created with synthetic biodegradable polymers in our laboratory using a phase-separation technique. To improve the cell seeding, distribution, mass transport, and new tissue organization, three-dimensional macroporous architectur...
متن کاملElasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix.
DNA is a common extracellular matrix component of bacterial biofilms. We find that bacteria can spontaneously order in a matrix of aligned concentrated DNA, in which rod-shaped cells of Pseudomonas aeruginosa follow the orientation of extended DNA chains. The alignment of bacteria is ensured by elasticity and liquid crystalline properties of the DNA matrix. These findings show how behavior of p...
متن کاملDevelopment of biocompatible synthetic extracellular matrices for tissue engineering.
Tissue engineering may provide an alternative to organ and tissue transplantation, both of which suffer from a limitation of supply. Cell transplantation using biodegradable synthetic extracellular matrices offers the possibility of creating completely natural new tissues and so replacing lost or malfunctioning organs or tissues. Synthetic extracellular matrices fabricated from biocompatible, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomacromolecules
سال: 2019
ISSN: 1525-7797,1526-4602
DOI: 10.1021/acs.biomac.8b01445